Micromechanics of actuation of ionic polymer-metal composites

نویسنده

  • Sia Nemat-Nasser
چکیده

Ionic polymer-metal composites ~IPMCs! consist of a polyelectrolyte membrane ~usually, Nafion or Flemion! plated on both faces by a noble metal, and is neutralized with certain counter ions that balance the electrical charge of the anions covalently fixed to the backbone membrane. In the hydrated state ~or in the presence of other suitable solvents!, the composite is a soft actuator and sensor. Its coupled electrical-chemical-mechanical response depends on: ~1! the chemical composition and structure of the backbone ionic polymer; ~2! the morphology of the metal electrodes; ~3! the nature of the cations; and ~4! the level of hydration ~solvent saturation!. A systematic experimental evaluation of the mechanical response of both metal-plated and bare Nafion and Flemion in various cation forms and various water saturation levels has been performed in the author’s laboratories at the University of California, San Diego. By examining the measured stiffness of the Nafion-based composites and the corresponding bare Nafion, under a variety of conditions, I have sought to develop relations between internal forces and the resulting stiffness and deformation of this class of IPMCs. Based on these and through a comparative study of the effects of various cations on the material’s stiffness and response, I have attempted to identify potential micromechanisms responsible for the observed electromechanical behavior of these materials, model them, and compare the model results with experimental data. A summary of these developments is given in the present work. First, a micromechanical model for the calculation of the Young modulus of the bare Nafion or Flemion in various ion forms and water saturation levels is given. Second, the bare-polymer model is modified to include the effect of the metal plating, and the results are applied to calculate the stiffness of the corresponding IPMCs, as a function of the solvent uptake. Finally, guided by the stiffness modeling and data, the actuation of the Nafion-based IPMCs is micromechanically modeled. Examples of the model results are presented and compared with the measured data. © 2002 American Institute of Physics. @DOI: 10.1063/1.1495888#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prepration and Characterization of Novel Ionoic Polymers to be Used as Artificial Muscles

      The muscle-like technology would be of enormous advantages for biomedical applications such as medical implants and human assist devices. Ionic polymer metal composites (IPMCs) are one kind of biomimetic actuators. An ionic polymer metal composite composed from an ionomer with high ion exchange capacity that packed between two thin metal layers. In the present study we focused on the prep...

متن کامل

Tailoring the actuation of ionic polymer–metal composites

Ionic polymer–metal composites (IPMCs) are biomimetic actuators and sensors. A typical IPMC consists of a thin perfluorinated ionomer membrane, with noble metal electrodes plated on both faces, and neutralized with the necessary amount of cations. A cantilevered strip of IPMC responds to an electric stimulus by generating large bending motions and, conversely, produces an electric potential upo...

متن کامل

Verification of Micromechanical Models of Actuation of Ionic Polymer-metal Composites (IPMCs)

Ionic Polymer-metal Composites (IPMCs) are soft actuators and sensors. They generally consist of a thin perfluorinated ionomer membrane, metal electrodes plated on both faces, and are neutralized with certain counter cations, balancing the charge of the anions covalently fixed to the membrane. Under a suddenly applied step function (1 to 3 V), the IPMC in alkali-metal cation forms exhibits a fa...

متن کامل

Bio-inspired design of tactile sensors based on ionic polymer metal composites

SUMMARY Ionic polymer metal composites (IPMC) have been widely investigated as newly-emerging materials for transducer applications due to their good performance, such as low weight, good flexibility and large strain. A bio-inspired design was described and applied to build 3-D papillae dome structure for vectorial tactile sensors. INTRODUCTION The electrical-chemical-mechanical effect in ionic...

متن کامل

Quasi-static Positioning of Ionic Polymer-Metal Composite (IPMC) Actuators

Ionic polymer-metal composites (IPMCs) generate large bending motions under a low driving voltage (about 1 V). In this paper quasi-static actuation of IPMC is investigated with the goal of precise positioning. It is found that IPMC exhibits hysteresis between its bending curvature and the applied quasi-static voltage. The Preisach operator is proposed to model the hysteresis, and its density fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014